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1. Introduction 

Models for scattering of electromagnetic waves from random rough surfaces have been 
developed during the last two centuries and the scientific interest in the problem remains 
strong also today due to the importance of this phenomenon in diverse areas of science, such 
as measurements in optics, geophysics, communications and remote sensing of the Earth.  
Such models can be categorised into empirical models, analytical models and a combination 
of the two. Though very simple, empirical models are greatly dependent on the 
experimental conditions. In spite of their complexity, only theoretical models can yield a 
significant understanding of the interaction between the electromagnetic waves and the 
Earth’s surface, although an exact solution of equations governing this interaction may not 
always be available and approximate methods have to be used. The semi-empirical models, 
which are based on both physical considerations and experimental observations, can be set 
between these two kinds of models and can be easily inverted. In this survey, we will focus 
on the analytical models and we study more in detail the Kirchhoff Approximation (KA), the 
Small Perturbation Method (SPM) and the Integral Equation Method (IEM). The Kirchhoff 
Approximation and the Small Perturbation Methods represent early approaches to 
scattering which are still much used, whereas the Integral Equation Method represents a 
newer approach which has a larger domain of validity. These methods have been found to 
be the most common in the literature and many of the other methods are based or have 
much in common with these approaches. In section 2, we begin by giving a brief 
presentation of the scattering problem and introduce some concepts and results from the 
theory of electromagnetic fields which are often used in this context. We will also define the 
bistatic scattering coefficient, due to the importance of this type of measurement in many 
remote sensing applications, and in particular in the retrieval of soil moisture content. In 
section 3, we give a brief presentation on the Kirchhoff Approximation and its close 
variants, the Physical Optics (PO) and the Geometrical Optics (GO). In section 4, we give a 
brief presentation of the Small Perturbation Method and in section 5 we will present the 
Integral Equation Model.  

2. Some concepts of the electromagnetic theory and surface parameters 

In this section we will give a brief presentation of some concepts on theories of 

electromagnetism and statistical characterisation of surfaces, which are often used for 
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modelling scattering of electromagnetic waves from random rough surfaces. We will also 

define the bistatic scattering coefficient due to the importance of this type of measurement in 

many remote sensing applications. 

2.1 The Maxwell’s equations and the wave equation 
The basic laws of the electromagnetism are given by the Maxwell’s equations which, for 

linear, homogeneous, isotropic, stationary and not dispersive media, can be written as 

(Balanis, 1989): 

 
t

∂
∇ × = −

∂

B
E  (2.1.1) 

 c i
t

∂
∇ × = + +

∂

D
H J J  (2.1.2) 

 ρ∇ ⋅ =D  (2.1.3) 

 0∇ ⋅ =B  (2.1.4) 

where E is the electric field vector, D is the electric flux density, H is the magnetic field 

vector, B is the magnetic flux density, J is the conduction electric current density, Ji is the 

impressed electric current density and ρ is the electric charge density. Maxwell’s equations 

together with the boundary conditions, give a complete description of the field vectors at 

any points (including discontinuities) and at any time. In rough surface scattering, the 

surface enters in the boundary conditions (see equations (2.2.1)-(2.2.4)), which have to be 

also supplied at infinity. 

If we consider time-harmonic variation of the electromagnetic field, the instantaneous field 

vectors can be related to their complex forms. Thus the Maxwell’s equations can be written 

in a much simpler form: 

 jωµ∇ × = −E H  (2.1.5) 

 ( ) i c ij jσ ωε ωε∇ × = + + ≡ +H E J E J  (2.1.6) 

 ε ρ∇ ⋅ =E  (2.1.7) 

 0µ∇ ⋅ =H  (2.1.8) 

where we assumed the region characterised by permeability µ, permittivity ε  and 

conductivity σ (lossy medium). To obtain the governing equation for the electric field, we 
take the curl of (2.1.5) and then replace (2.1.6). Thus, 

 
2

c ijω µε ωµ∇ × ∇ × + =E E J  (2.1.9) 

which is known as the inhomogeneous Helmholtz vector wave equation. In a free-source 

region,  0∇ ⋅ =E  and (2.1.9) simplifies to: 
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 2 2 0cω µε∇ + =E E  (2.1.10) 

In rectangular coordinates, a simple solution to (2.1.10) has the form: 

 ( ) 0
je− ⋅= k rE r E  (2.1.11) 

where E0 is a constant complex vector which determines the polarisation characteristics and 

the complex propagation vector, k , is defined as: 

 ˆ ˆ ˆ
x y zk k k= + +k x y z  (2.1.12) 

with the components satisfying  

 2 2 2 2 2
x y z ck k k kω µε+ + = =  (2.1.13) 

Equation (2.1.11) represents a plane wave and k is the propagation constant. Most analytical 
methods for scattering from rough surfaces assume this kind of incident wave, which if 
linearly polarised can be rewritten as: 

 ( ) 0
ˆ ˆiji iE e E− ⋅= =k rE r p p  (2.1.14) 

where ˆ
i ik=k k , p̂  is the unit polarisation vector and E0 is the amplitude. The associated 

magnetic field is given by: 

 ( ) ( )ˆi i
i η= ×H r k E r  (2.1.15) 

where cη µ ε=  is the wave impendence in the medium. 

2.2 Integral theorems and other results used in scattering models 
We will present some results for electromagnetic fields which are often used as a starting point 
in the analytical models for scattering from rough surfaces. These equations are approximated 
and simplified using different methods and assumptions in the analytical solutions for 
scattering from rough surfaces. We will not show how the equations in this section are 
derived, but derivation can be found in the references. 
Consider an electromagnetic plane wave incident on a rough surface as shown in figure 2.2.1. 
 

 

Fig. 2.2.1. Scattering of electromagnetic field on surface separating two media. 
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Across any surface interface, the electromagnetic field should satisfy continuity conditions 
given by (Balanis, 1989): 

 ( )1
ˆ 0× − =n E E  (2.2.1) 

 ( )1
ˆ

s× − =n H H J  (2.2.2) 

 ( )1 1
ˆ

sε ε ρ⋅ − =n E E  (2.2.3) 

 ( )1 1
ˆ 0ε ε⋅ − =n H H  (2.2.4) 

where n̂  is the unit normal vector of the rough surface (pointing in the region 0). The 

electric surface current density, Js, and the charge surface density, ρs, at the rough interface 
are zero unless the scattering surface (or one of the media) is a perfect conductor. 
Using the fact that the fields satisfy the Helmholtz wave equation (2.1.9), it can be shown 
that in the region 0, the electromagnetic fields E and H, satisfy Huygens’ principle and the 
radiation boundary condition at infinity and E is given by (Ulaby et al, 1982; Tsang et al, 
2000):  

 ( ) ( ) ( ) ( ) ( ) ( ){ }
1

ˆ ˆ, ,i

S

j dsωµ ′ ′ ′ ′ ′ ′ ′= + − ⋅ × − ∇ × ⋅ ×E r E r G r r n H r G r r n E r  (2.2.5) 

where G  is the dyadic Green function (to the vector Helmholtz equation) which is 

represented by: 

 ( ) ( )2
, ,g

k

∇∇ ′ ′= +  G r r I r r  (2.2.6) 

Here I  is the unit dyadic and ( ),g ′r r  is the Green function that satisfies the scalar wave 

equation. It assumes the following expression: 

 ( ),
4

jk
e

g
π

′− −

′ =
′−

r r

r r
r r

 (2.2.7) 

In (2.2.5) the first term on the right-hand side represents the field generated by a current 

source in an unbounded medium with permittivity ε and permeability µ and corresponds to 

the incident field. Hence, the electromagnetic field in the region 0 is expressed as the sum of 

two contributions: one is given by the incident field ( )iE r ; the other contribution is given by 

the surface integrals that involve the tangential components  tE  and tH  of the fields at the 

boundary S1 (note that ˆ ˆ
t′ ′× = ×n E n E  and ˆ ˆ

t′ ′× = ×n H n H ) and represents the scattered field 

due to the presence of surface. 
The equation (2.2.5) constitutes the mathematical basis of Huygens’ principle in vector form. 

According to this principle, the electromagnetic field in a source-free region ( 0=J ) is 

uniquely determined once its tangential components are assigned on the boundary of the 
region. However, since in the region 0, the existence of the impressed current J has been 
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assumed, the total electric field can be expressed as the sum of two terms, the incident and 
scattering ones: 

 ( ) ( ) ( )i s= +E r E r E r  (2.2.8) 

Thus, the scattered field can be written as: 

 ( ) ( ) ( ) ( ) ( ){ }
1

ˆ ˆ, ,s

S

j dsωµ ′ ′ ′ ′ ′ ′ ′= − ⋅ × − ∇ × ⋅ ×E r G r r n H r G r r n E r  (2.2.9) 

If the observation point is in the far field region, the Green function in (2.2.9) can be 
simplified and the scattering field can be written as (Ulaby et al,1982; Tsang et al, 2000): 

 ( ) ( )( ) ( )( )
1

ˆ ˆ ˆ js

S

K e dsη ′⋅ ′ ′ ′ ′ ′= × × − × ×  k rE r r n E r r n H r  (2.2.10) 

where 4jkrK jke rπ−= −   and r̂  is the unit vector pointing in the direction of observation. 

The tangential surface fields ˆ ×n E  and ˆ ×n H  can be also expressed as (Poggio & Miller, 1973): 

 
2

ˆ ˆ ˆ2
4

i n dsn E n E
p

¢´ = ´ - ´ò e  (2.2.11) 

 
2

ˆ ˆ ˆ2
4

i ds
π

′× = × + × n H n H n   (2.2.12) 

and 

 
2

ˆ ˆ
4

t t t ds
π

′× = − × n E n e  (2.2.13) 

 
2

ˆ ˆ
4

t t t ds
π

′× = × n H n   (2.2.14) 

where 

 ( ) ( ) ( )1 1 1
ˆ ˆ ˆjk G G Gη ′ ′ ′ ′ ′ ′ ′ ′= × − × × ∇ − ⋅ ∇n H n E n Ee  (2.2.15) 

 ( ) ( ) ( )1 1 1
ˆ ˆ ˆ

jk
G G G

η
′ ′ ′ ′ ′ ′ ′ ′= × − × × ∇ − ⋅ ∇n E n H n H  (2.2.16) 

 ( ) ( ) ( ) ( )2 2 2 2 2
ˆ ˆ ˆ 1t rjk G G Gη ε′ ′ ′ ′ ′ ′ ′ ′ = − × − × × ∇ − ⋅ ∇ n H n E n Ee  (2.2.17) 

 ( ) ( ) ( ) ( )2
2 2 2

2

ˆ ˆ ˆ 1t r

jk
G G G µ

η

 
′ ′ ′ ′ ′ ′ ′ ′= − × − × × ∇ − ⋅ ∇  n E n H n H  (2.2.18) 

and n̂ , ˆ ′n , ˆ
tn , ˆ

t′n  are the unit normal vectors to the surface and ˆ ˆ
t = −n n , ˆ ˆ

t′ ′= −n n , ˆ ×n E  

and ˆ ×n H  are the total tangential fields on the rough surface in the medium above the 
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separating interface; G1 and G2 are the Green’s functions in medium above and below the 

interface, respectively, and 2 1rε ε ε= , 2 1rµ µ µ= , 2 2 2η µ ε=  and 2 2 2k ω µ ε= . 

2.3 The nature of surface scattering 
When an electromagnetic wave impinges the surface boundary between two semi-infinitive 
media, the scattering process takes place only at the surface boundary if the two media can 
be assumed homogeneous. Under such supposition, the problem at issue is indicated as 
surface scattering problem. On the other hand, if the lower medium is inhomogeneous or is a 
mixture of materials of different dielectric properties, then a portion of the transmitted wave 
scattered backward by the inhomogeneities may cross the boundary surface into the upper 
medium. In this case scattering takes place within the volume of the lower medium and it is 
referred to as volume scattering. In most cases both the scattering processes are involved, 
although only one of them can be dominant. In the case of bare soil, which will be assumed 
to be a homogeneous body, surface scattering is the only process taken into consideration. 
When the surface boundary separating the two semi-infinitive media is perfectly smooth the 
reflection is in the specular direction and is described by the Fresnel reflection laws. On the 
other hand, when the surface boundary becomes rough, the incident wave is partly reflected in 
the specular direction and partly scattered in all directions. Qualitatively, the relationship 
between surface roughness and surface scattering can be illustrated through the example 
shown in Figure 2.3.1. For the specular surface, the angular radiation pattern of the reflected 
wave is a delta function centred about the specular direction as shown in Figure 2.3.1 (a). For 
the slightly rough surface (Figure 2.3.1 (b)), the angular radiation pattern consists of two 
components: a reflected component and a scattered component. The reflected component is 
again in the specular direction, but the magnitude of its power is smaller than that for smooth 
surface. This specular component is often referred to as the coherent scattering component. The 
scattered component, also known as the diffuse or incoherent component, consists of power 
scattered in all directions, but its magnitude is smaller than that of the coherent component. As 
the surface becomes rougher, the coherent component becomes negligible. 
Note that the specular component represents also the mean scattered field (in statistical 
sense), whereas the diffuse component has a stochastic behaviour, associated to the 
randomness of the surface roughness. 
 

   
     (a)          (b)         (c) 

Fig. 2.3.1. Relative contributions of coherent and diffuse scattering components for different 
surface-roughness conditions: (a) specular, (b) slightly rough, (c) very rough. 

2.3.1 Characterisation of soil roughness 

A rough surface can be described by a height function ( ),z x yς = . There are basically two 

categories of methods which are being used to measure surface roughness. The roughness 

θi θs θs 
θi 

θs θi 
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can be carried out by means of various experimental approaches able to reproduce the 

surface profile by using contact or laser probes, or it can be estimated using some theory 

which relates scattering measurements to surface roughness. In general, the study of 

scattering in remote sensing is performed by using random rough surface models, where the 

elevation of surface, with respect to some mean surface, is assumed to be an ergodic1, and 

hence stationary2, random process with a Gaussian height distribution. 
Accordingly, the degree of roughness, or simply the roughness, of a random surface is 
characterised in terms of statistical parameters that are measured in units of wavelength. For 
this reason, a given surface that may “appear” very rough to an optical wave, may “appear” 
very smooth to a microwave. 
The two fundamental parameters commonly used are the standard deviation of the surface 
height variation (or rms height) and the surface correlation length. Such parameters describe 
the statistical variation of the random component of surface height relative to a reference 
surface, that may be the unperturbed surface of a period pattern, as in the case of a row-
tilled soil surface (Figure 2.3.1.1. (a)), or may be the mean plane surface if only random 
variations exist (Figure 2.3.1.1 (b)). 
 

 
    (a)    (b) 

Fig. 2.3.1.1. Two configurations of height variations: (a) random height variations 
superimposed to a periodic surface; (b) random variations superimposed to a flat surface. 

Let ( )z x  be a representative realisation of the ergodic and stationary process that describes 

a generic rough surface in a one-dimensional case. The mean value, which throughout this 

chapter will be denoted by angular brackets ... , is equal to the spatial average over a 

statistically representative segment of the surface, of dimensions Lx, centred at the origin: 

 ( ) ( )
2

2

1 x

x

L

L
x

z z x dx z x
L −

= =  (2.3.1.1) 

As it can be noted from the above definition, for a stationary surface the average does not 
depend on x. The second moment is: 

 ( ) ( )
22 2 2

2

1 x

x

L

L
x

z z x dx z x
L −

= =  (2.3.1.2) 

                                                 
1 A process is ergodic when one realisation is representative of all the process, i.e. the statistical averages 
over an extracted random variable may be replaced by spatial averages over a single realisation. 
2 The stationarity implies that all the statistically properties of a random process are invariant under the 
translation of spatial coordinates. 

Random Surface Component

Mean (Reference) Surface

Random Surface Component

Periodic (Reference) Surface
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Using the above expressions, the standard deviation of the surface height, σ, is therefore 
defined as: 

 ( ) ( )
1 2 1 22 22z z z x zσ    = − = −      (2.3.1.3) 

Such quantities characterise the dispersion of the surface height relative to the reference 

plane. Taking into account the stationary properties of the process and considering its mean 

value null, the variance, 2σ , is coincident with the second moment and does not depend on 

x. The autocorrelation function of the height random process ( )z x  is given by: 

 ( ) ( ) ( ) ( ) ( )
2

2

1 x

x

L

z L
x

R z x z x dx z x z x
L

τ τ τ
−

= + = +  (2.3.1.4) 

The normalised autocorrelation function (ACF), better known as the correlation coefficient, 
assumes for a process with zero mean value the following expression: 

 ( )
( ) ( )

( )

( )
( )

( )
2

2

2 22

2

0

x

x

x

x

L

L z z
L

z
L

z x z x dx R R

Rz x dx

τ τ τ
ρ τ

σ

−

−

+
= = =

  (2.3.1.5) 

It is a measure of the similarity between the height z at point x and at point distant τ from x. 
It has the following properties: 

( ) ( )0 1ρ τ ρ≤ = ; 

( )lim 0
τ

ρ τ
→∞

= . 

The spectral density or power spectrum is defined, for an ergodic random process, as the 

Fourier transform of the autocorrelation function ( )zR x : 

 ( ) ( ) xjk x
x zW k R x e dx

∞

−∞
=   (2.3.1.6) 

where kx is the Fourier transform variable.  
However, taking into account the equation (2.3.1.5), it is common practice in characterising 
the random surface to define the power spectrum of the normalised autocorrelation 
function: 

 ( ) ( ) xjk x
xW k x e dxρ

∞

−∞
=   (2.3.1.7) 

The Gaussian distribution plays a central role in modelling scattering from random rough 
surfaces because it is encountered under a great number of different conditions and because 
Gaussian variates have the unique property that the random process is entirely determined 
by the height probability distribution and autocorrelation. All higher order correlations can 
be expressed in terms of the (second order) autocorrelation function, which simplifies 
modelling the surface scattering process. A simple and often used form for the 
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autocorrelation is the Gaussian function but other forms have also been studied (Saillard & 
Sentenac, 2001). 

The roughness spectrum at the n’th power of the autocorrelation function, ( )n
W , which 

often enters into closed form solutions of the scattering problem, is given by the Fourier 
transform: 

 ( ) ( ) ( ) xn jk xn
xW k x e dxρ

∞

−∞
=   (2.3.1.8) 

The consideration of a realistic autocorrelation function is in fact a relevant problem for a 
better modelling of the soil scattering. Some often used forms (see for instance (Fung, 1994)) 
of the autocorrelation function are the Gaussian correlation function, the exponential 
correlation function, combinations of the Gaussian and exponential functions and the so 
called 1.5-power correlation function. For all of these, the roughness spectrum at the n’th 
power can be evaluated analytically (see (Fung, 1994)). For instance, for an isotropically 
rough surface, the normalised Gaussian autocorrelation in a single dimension assumes the 
following expression: 

 ( )
2

2
exp

x
x

l
ρ

 
= −     (2.3.1.9) 

where l is the correlation length. Such surface parameter is defined as the displacement x for 

which ( )xρ  is equal to 1 e  

 ( ) 1l eρ =  (2.3.1.10) 

The correlation length of a surface provides a reference for estimating the statistical 
independence of two points on the surface; if the two points are separated by a horizontal 
distance greater than l, then their heights may be considered to be (approximately) 
statistically independent of one another. In the extreme case of a perfectly smooth (specular) 
surface, every point on the surface is correlated with every other point with a correlation 

coefficient of unity. Hence, l = ∞  in this case. 

Referring to equation (2.3.1.9), the n’th power roughness spectrum is equal to: 

 

22

( ) 4( ) ( )
x

x

k l
jk xn n n

xW k x e dx l e
n

π
ρ

−
≡ =  (2.3.1.11) 

Beside the height random function ( )z x , the slope function is another important 

characterisation of the rough surface. It is defined as: 

 
( ) ( )

0
limx
x

z x x z x
Z

xΔ →

+ Δ −
=

Δ
 (2.3.1.12) 

Considering the stationary random process ( )z x  as normally distributed with zero mean 

and variance 2σ , being Zx the first derivative, its distribution is again normal with zero 

mean and variance related to the second derivative of the autocorrelation function of ( )z x  

at the origin (Beckman & Spizzichino, 1963): 
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 ( )2 2 2 0s xZσ σ ρ′′= = −  (2.3.1.13) 

The rms slope is subsequently indicated as m: 

 ( )( )
1 22 0m σ ρ′′= −  (2.3.1.14) 

When the normalised autocorrelation function is Gaussian (equation (2.3.1.9)), the rms slope 
is equal to: 

 2m
l

σ
=  (2.3.1.15) 

2.4 Bistatic scattering coefficient 

A quantity often used in models and measurements of scattering in the microwave region is 

the bistatic scattering coefficient ( ), , , ,o
q p i i s sσ θ φ θ φ . It describes the target’s scattering properties 

at a given frequency, polarisation, incidence and observing directions, being independent on 

the specific measurement system used. It is possible to define ,
o
q pσ  directly in terms of the 

incident and scattering field i
pE  and s

qE  as follows (Ulaby et al, 1982): 

 ( )

22

, 2

0

4
, , ,

s
po

q p i i s s
i
q

R E

A E

π
σ θ φ θ φ =  (2.4.1) 

where the ensemble average must be considered in case the scattered field is the fluctuating 
zero mean component (i.e., the diffuse or incoherent component mentioned before) 

generated by a natural target or random rough surface. Such equation shows ,
o
q pσ  as the 

ratio of the total power scattered by an equivalent isotropic scatterer in direction ( , )s sθ φ  to 

the product of the incident power density in direction ( , )i iθ φ  and the illuminated area. 

The backscattering coefficient ( ),
o
q p iσ θ  is a special case of ( ), , , ,o

q p i i s sσ θ φ θ φ ; it is defined for 

s iθ θ=  and s iφ φ π= ±  (Figure 2.4.1), which corresponds to the incident and scattered 

direction being the same except for a reversal in sense. 
 

 

Fig. 2.4.1. Geometry of the scattering problem. 
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3. The Kirchhoff approximation 

In this section we shall consider the Kirchhoff (also sometimes referred to as the tangent 
plane approximation) approach to describe the scattering from rough surfaces, which was 
one of the first methods applied. We will consider surfaces with random surface profiles (i.e. 
not period surfaces) and within the context of the vector theory we will discuss the 
Kirchhoff Approximation. We will consider here the case of scattering from 2-dimensional 
dielectric surfaces. We will present results for the case of a surface which can be 
characterised as a Gaussian random process. We will also mention some extensions of the 
Kirchhoff approximation and will give references to further reading about the Kirchhoff 
approach. The reference list is by no means complete, since the literature on the Kirchhoff 
approximation is vast. A good representation of the Kirchhoff method can be found for 
instance in (Tsang et al, 2000, Tsang & Kong, 2001, Ulaby et al, 1982). 

3.1 Formulation of the scattering problem 
The geometry of the scattering problem we consider is shown in figure 2.4.1. We consider a 
monochromatic, linearly polarised incident plane wave with electric and magnetic field 
given by the equations (2.1.14) and (2.1.15), respectively. 

It can be shown, similarly to equation (2.2.10), that the far zone scattering field, s
qpE , can be 

written in terms of the tangential surface fields in the medium above the separating surface 

as (Stratton-Chu integral) (Ulaby et al, 1982): 

 ( ) ( ){ } ( )ˆˆ ˆ ˆ sjs
qp s p pE K e dsη ⋅ = ⋅ × × + ×  k r

q k n E n H  (3.1.1) 

where 

 ( )ˆ ˆ ˆˆ ˆ ˆ ˆsin cos sin sin coss s s s s s s sx sy szk k k k kθ φ θ φ θ= = + + = + +k k x y z x y z  (3.1.2) 

What needs to be calculated are the tangential surface fields in equation (3.1.1). In equations 
(2.2.11) - (2.2.12) and (2.2.15) - (2.2.16) we presented integral equations for the tangential 
surface fields in the medium above the scattering dielectric surface. It should be noted that 
these expressions are exact. However, they cannot in general be solved analytically and 
therefore approximations have to be introduced. Below we will show that by introducing an 
approximation called the tangent plane approximation (or the Kirchhoff approximation), closed 
analytical solutions can be obtained to the scattering problem. 

3.2 The tangent plane approximation and the Kirchhoff fields 
In the Kirchhoff approach, the total fields at any point of the surface (i.e., the incident plus 
the scattered one, to be considered inside the integral (3.1.1)) are approximated by the fields 
that would be present on an infinitely extended tangent plane at that particular point on the 
surface. The reflection is therefore considered to be locally specular. It is due to this fact that 
the Kirchhoff approximation is also referred to as the tangent plane approximation. The 
Kirchhoff approach requires to be valid that every point on the surface has a large radius of 
curvature relative to the wavelength of the incident field. 
Thus, under the tangent-plane approximation, the total field at a point on the surface is 
assumed equal to the incident field plus the field reflected by an infinite plane tangent to the 
point. Hence, the tangential surface fields are (Ulaby et al, 1982): 
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 ( ) ( )ˆ ˆ ˆ i r
k

× = × = × +n E n E n E E  (3.2.1) 

 ( ) ( )ˆ ˆ ˆ i r
k

× = × = × +n H n H n H H  (3.2.2) 

Here the subscript k stands for the Kirchhoff approximation.  

The way to proceed from here, in most presentations of the Kirchhoff method, consists in 

expressing the tangential fields under the Kirchhoff approximation in terms of the incident 

electric field components and the local Fresnel reflection coefficients, which depend on the 

local angles of incidence. This results in the following expressions: 

 ( ) ( ) ( ) ( ) ( ) ( ) ˆ

0
ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 1 ijk

h v iR R E e− ⋅ × = + ⋅ × − − ⋅ ⋅  k rn E p t n t n k p d t  (3.2.3) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )
ˆ

0
ˆ ˆˆ ˆ ˆˆ ˆ ˆ ˆ ˆ1 1 ijk

h i vR R E eη − ⋅ × = − − ⋅ ⋅ + + ⋅ ×  k rn H n k p t t p d n t  (3.2.4) 

where the unit vectors t̂ , d̂ , ˆ
ik  define the local reference coordinate system (see (Fung, 

1994)) and n̂  is the unit normal vector to the interface in the above medium. Rv and Rh are 

the Fresnel reflection coefficients for vertical and horizontal polarisation respectively. 

Upon substituting (3.2.3) and (3.2.4) in (3.1.1), the scattered field is: 

 ( ) ( ){ } ( )ˆˆ ˆ ˆ s ijs
qp s p pE K e dsη − ⋅ = ⋅ × × + ×  k k r

q k n E n H  (3.2.5) 

where the phase factor, ( )ˆexp ijk− ⋅k r , of the incident wave has been pointed out from the 

equations (3.2.3) and (3.2.4). Such equation represents the scattered field formulated under 

the tangent-plane, or Kirchhoff approximation. As it stands the expression is a complicated 

function of the surface function and its partial derivatives. No analytic solution has been 

obtained from (3.2.5) without additional simplifying assumptions. Here we will show the 

results presented in (Ulaby et al, 1982): for surface with large (with respect to wavelength) 

standard deviation of surface heights, for which the stationary-phase approximation 

(Geometric Optics, GO) will be used, and for surfaces with small slopes and a medium or 

small standard deviation of surface heights, for which a scalar approximation (Physical 

Optics, PO) will be used. 

3.2.1 The scattered field under the stationary-phase approximation (Geometric Optic, 
GO) 
Under the stationary-phase approximation the local tangent plane on a surface point can be 

considered infinitely wide and, as consequence, the angular re-irradiation pattern 

originating from that specific point can be represented by a delta function centred in the 

specular direction. This means that scattering can occur only along directions for which 

there are specular points on the surface. Hence local diffraction effects are excluded. The 

approximating relations are obtained from the phase Q of (3.2.5), that is: 

 ( )ˆ ˆ
s i x y zQ k q x q y q z= − ⋅ ≡ ⋅ = + +k k r q r  (3.2.1.1) 
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where 

 ˆ ˆ ˆ ˆsin cos sin sin coss s s s s sθ φ θ φ θ= + +k x y z  (3.2.1.2) 

 ˆ ˆ ˆ ˆsin cos sin sin cosi i i i i iθ φ θ φ θ= + −k x y z  (3.2.1.3) 

 ( )sin cos sin cosx s s i iq k θ φ θ φ= −  (3.2.1.4) 

 ( )sin sin sin siny s s i iq k θ φ θ φ= −  (3.2.1.5) 

 ( )cos cosz s iq k θ θ= +  (3.2.1.6) 

The phase Q is said to be stationary at a point if its rate of change is zero at the point, that is: 

0 x z

zQ
q q

x x

∂∂
= = +

∂ ∂
 

0 y z

zQ
q q

y y

∂∂
= = +

∂ ∂
 

Hence, the partial derivatives of the surface slopes can be replaced by the components of the 
phase as: 

 x
x

z

z q
Z

x q

∂
= = −

∂
 (3.2.1.7) 

 
y

y
z

qz
Z

y q

∂
= = −

∂
 (3.2.1.8) 

Since, the local unit vector n̂  is a function of the surface derivatives: 

 
2 2

ˆ ˆ ˆ
ˆ

1

x y

x y

Z Z

Z Z

− − +
=

+ +

x y z
n  (3.1.1.9) 

the use of (3.2.1.7) and (3.2.1.8) makes ˆ ×n E  and ˆ ×n H  independent on the integration 

variables. Thus, the expression for sE  can be rewritten as: 

 ( ) ( ) 1
ˆ ˆˆ ˆs

s sK Iη = × × − × × E k n E k n H  (3.2.1.10) 

where 

 
( )ˆ ˆ

1
s ijk

I e ds
− ⋅

=  k k r
 (3.2.1.11) 

The scattering field corresponding to transmission of p̂  polarisation and reception of q̂  

polarisation can be written as (Ulaby et al, 1982): 
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 1 0
ˆs s

qp qpE K I E U= ⋅ ≡q E  (3.2.1.12) 

where 

 ( ) ( )
0

1 ˆ ˆˆ ˆ ˆ
qp s sU

E
η = ⋅ × × − × × q k n E k n H  (3.2.1.13) 

To compute the scattering coefficient, defined in (2.4.1), for different polarisation states, it is 

necessary to calculate the ensemble average of 
2

1I : 

 
( ) ( )ˆ ˆ2

1
s ijk

I e dsds
′− ⋅ −

′=   k k r r
 (3.2.1.14) 

By assuming the surface roughness as a stationary and isotropic Gaussian random process, 

with zero mean, variance 2σ , and correlation coefficient ρ, and in the assumption that the 

standard deviation of surface heights is large (that is, ( )2
zq σ  large) the integral can be 

solved. The result is (Ulaby et al, 1982): 

 
( ) ( )

2 22
2 0

1 4 2 2 2

2
exp

0 2 0

x y

z z

q qA q
I

q q

π

σ ρ σ ρ

 + = −
′′ ′′  

 (3.2.1.15) 

where the illuminated area A0 is ( )2
2L , ( )0ρ′′  is the second derivatives of ρ evaluated at the 

origin and ( )2 0σ ρ′′  corresponds to the mean-squared slope of the surface (Ulaby et al, 

1982) (Section 2.3.1). 
Upon substituting (3.2.1.15) into the product in the scattered-field expression, it follows: 

 
2 2

0 1
s s
qp qp qpE E KE U I∗ =  (3.2.1.16) 

Substituting (3.2.1.16) in the definition of the scattering coefficient given by equation (2.4.1), 
it assumes the following expression: 

 
( ) ( )

2
2 2

4 2 2 2
exp

2 0 2 0

qp
x yo

qp
z z

kq U q q

q q
σ

σ ρ σ ρ

    +   = −
′′ ′′    (3.2.1.17) 

In the derivation of o
qpσ , the effects of shadowing and multiple scattering have been ignored.  

It is important to underline that (3.2.1.17) is valid only for surface with sufficiently large 

standard deviation of surface heights. Under such assumption, that is ( )2
zq σ  large, the 

scattering is purely incoherent. As ( )2
zq σ  decreases, some scattered energy begins to appear 

in the coherent component. To examine such situation, a different approximation to the 

tangential fields is needed to permit small ( )2
zq σ . This is discussed in the next section. 
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3.2.2 The scattered field under the scalar approximation (Physical Optics, PO) 
A different Kirchhoff approach is the Physical Optics solution to (3.1.1). The Physical Optics 

approach involves the integration of the Kirchhoff scattered field over the entire rough 

surface, not just the portions of surface which contribute specularly to the scattered 

direction. Unlike the Geometric Optics solution, the Physical Optics solution predicts a 

coherent component.  

The power in the incoherent reflected field can be found by expanding the Stratton-Chu 

equation in a Taylor series in surface slope distribution. In (Ulaby et al, 1982) the Physical 

Optics solution is called scalar approximation because slopes are ignored in the surface 

coordinate system, leading to a decoupling of polarisation in the vector scattering equations. 

Accordingly, the basic scattered-field expression can be rewritten in the form: 

 ( )0
ˆ ˆexps

qpqp s iE KE U jk ds = − ⋅  k k r  (3.2.2.1) 

where qpU  are given in (Ulaby et al, 1982). To find s s
qp qpE E ∗  for the scattering-coefficient 

computation, the following integral needs to be computed: 

 ( ) ( )ˆ ˆexpqp qp s iI U U jk dsds
∗  ′ ′= − ⋅ −   k k r r  (3.2.2.2) 

Since all qpU  are expressed in a Taylor series in surface slope distribution, Zx and Zy: 

 0 1 2qp x yU a a Z a Z= + +  (3.2.2.3) 

where ai are polarisation-dependent coefficients, the product qp qpU U
∗

 can be written up to 

the first order in slope as: 

 0 0 0 1 0 1 0 2 0 2qp qp x x y yU U a a a a Z a a Z a a Z a a Z
∗ ∗ ∗ ∗ ∗ ∗≈ + + + +  (3.2.2.4) 

Since ( )2
zq σ  is no longer required to be large and assuming the size of the illuminated area 

equal to 2 2L L× , the ensemble average of the first term in (3.2.2.4) can be expressed as (for 
more details see (Ulaby et al, 1982)) 

 
( )

( ) ( )
2 2

2 2
2 22

0 0 2 2
0

2 2
!

x yz

n

L Lz jq u jq vq n

L L
n

q
I a e L u L v e dudv

n

σ
σ

ρ
∞

+−

− −
=

= − −    (3.2.2.5) 

where the n = 0 term corresponds to coherent scattering. It can be shown that this coherent-
scattering coefficient can be expressed as: 

 ( ) ( )
2 222

0
zqo c

qp x yk a q q e σσ π δ δ −=  (3.2.2.6) 

which shows that coherent scattering is important only when qzσ is small. The rest of the 

series in (3.2.2.5) represents incoherent scattering. The integral I0 for 1n ≥  can be rewritten 

in the following manner pointing out the illuminated area ( )2
0 2A L= : 

www.intechopen.com



 
Electromagnetic Waves 

 

218 

 
( )2 2

2 2
2

0 0 0
1 !

x yz

n

z jq u jq vq n

n

q
I a e A e dudv

n

σ
σ

ρ
∞ ∞ ∞ +−

−∞ −∞
=

=     (3.2.2.7) 

For an isotropically rough surface with correlation length l and Gaussian normalised 

autocorrelation function, 2 2exp lρ ξ = −  , the integral (3.2.2.7) can be shown to be: 

 

( )2 2 2

2 2 2
4

x y

x y

q q l

n l jq u jq v n
l

e dudv e
n

ξ π
+

−∞ ∞ − + +

−∞ −∞
=   (3.1.2.8) 

It is clear that different solutions may be obtained for the integral if the normalised surface 
autocorrelation function is assumed to take some other functional forms. Upon substituting 

(3.2.2.7) and (3.2.2.8) into the factor s s
qp qpE E ∗ , the scattering coefficient for the incoherent 

part of the 
2

0a  term has the following expression: 

 ( )
( ) ( )2 2 2

2 2
2 2

2
4

0
1

2
!

x y

z

n q q l
zqo inc n

qp
n

q
a kl e e

n n

σ
σ

σ

+
∞ −

−

=

=   (3.2.2.9) 

If the normalised surface autocorrelation is not known, o inc
qpσ  can be written as: 

 
( )2 2

2 222
0

14 !
x yz

n

z jq u jq vqo inc n
qp

n

qk a
e e dudv

n

σ
σ

σ ρ
π

∞ ∞ ∞ +−

−∞ −∞
=

=     (3.2.2.10) 

An additional contribution to the total scattering coefficient comes from the slope terms in 

(3.2.2.4). It can be computed taking into account in the ensemble average s s
qp qpE E ∗  the 

integrals of the slope terms in the x- and y-direction. The results of such integrals for a 

Gaussian normalised autocorrelation function are reported in (Ulaby et al, 1982). Also the 

expressions of the polarisation-dependent coefficients ai can be found in the same reference. 

However, the expressions of the coefficient a0 for each polarisation are reported below for 

the two particular cases of backscattering and scattering in the specular direction. 
In the backscattering: 

HH polarisation:  ( )0 2 cosh i ia R θ θ=  

VH polarisation:  0 0a =  

VV polarisation:  ( )0 2 cosv i ia R θ θ= −  

HV polarisation:  0 0a =  

Conversely, in the specular direction case: 

HH polarisation:  ( )0 2 cosh i ia R θ θ= −  

VH polarisation:  0 0a =  

VV polarisation:  ( )0 2 cosv i ia R θ θ=  

HV polarisation:  0 0a =  
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The quantity qx,y,z are defined in the previous section. 

3.3 On the range of validity of the Kirchhoff method and shadowing effects 
The basic assumption of the Kirchhoff method is that plane-boundary reflection occurs at 
every point on the surface. Thus, when statistical surfaces are considered, their horizontal-
scale roughness, the correlation length l, must be larger than the electromagnetic 

wavelength, while their vertical-scale roughness, the standard deviation σ of surface 
heights, must be small enough so that the average radius of curvature is larger than the 
electromagnetic wavelength. Mathematically, for stationary isotropic Gaussian surface the 
above-stated restriction are (Ulaby et al, 1982): 

 6kl >  (3.3.1) 

 
2

2.76

l
σ

λ
<  (3.3.2) 

where k is the wave number and λ is the electromagnetic wavelength. Note that the surface 
standard deviation should be small relative to the correlation length, but it can be 
comparable to or even larger than the electromagnetic wavelength. This means that large 
standard deviations can be tolerated if the correlation length is large enough to preserve an 
acceptable average radius of curvature. The conditions reported above are for the Kirchhoff 
approximation. The scattering models described in section 3.2.1 and 3.2.2 require additional 
approximations reported in the following table: 
 

Validity limits of Kirchhoff Approximation (KA) 
(Gaussian surface) 

        l2 > 2.76σλ                            and                        kl > 6 

Stationary Phase Aproximation (GO) Scalar Approximation (PO) 

kσ > 2 kσ < 1 and rmsslope < 0.25 

Table 3.3.1. Validity of GO and PO for stationary isotropic Gaussian surfaces with standard 

deviation σ and correlation length l. 

3.4 Some concluding remarks on the Kirchhoff method 
As was mentioned in the previous paragraph, the Kirchhoff method does neither in itself 
account for shadowing and nor does it (in the form described here) account for multiple 
scattering on the surface. Due to the lack of these two effects energy conservation is not 
satisfied. However, in (Ulaby et al, 1982) this conservation is demonstrating with the 
inclusion of these two effects. 
In the literature, the surface height distribution is in most cases assumed to be Gaussian. The 
reason for this is, as mentioned previously, that the surface roughness rms height and the 
autocorrelation function entirely determine the random process, and therefore the bistatic 
scattering coefficient can be expressed in terms of these two quantities. 
The Kirchhoff method has been applied to surfaces described by fractal geometry. As an 
example we can mention that in (Franceschetti et al, 1999) a fractional Brownian motion model 
was used for modelling the scattering from natural rough surface. In combination with the 
Kirchhoff method an analytical solution for the bistatic scattering coefficient was obtained. 
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4. The small perturbation method 

The Small Perturbation Method (SPM) belongs to a large family of perturbation expansion 
solutions to the wave equation. The approach is based on formulating the scattering as a 
partial differential equation boundary value problem. The basic idea is to find a solution in 
terms of plane waves that matches the surface boundary conditions, which state that the 
tangential component of the field must be continuous across the boundary. The surface 
fields are expanded in a perturbation series with respect to surface height, e.g., 

0 1 ...= + +E E E . In the expansion 0E  would be the surface field if the surface was flat. The 

philosophy behind this approach is that small effective surface currents on a mean surface 
replace the role of a small-scale roughness. So this method applies to surfaces with small 
surface height variations and small surface slopes compared with the wavelength but 
independently of the radius of curvature of the surface. Therefore, the surface needs no 
longer to be approximated by planes. The small-scale roughness is expanded in a Fourier 
series and the contribution to the field is therefore analysed in terms of different wavelength 
components. 
Here we will report only the expressions of the bistatic scattering coefficient. A more 
detailed description of their computation process can be found in (Ulaby et al, 1982). 

4.1 A small presentation of the SPM 
The zero order solution of the SPM is the same as for a plane interface, while the first order 
solution gives the incoherent scattered field due to single scattering. For the latter case, the 
bistatic scattering coefficient for either a horizontally or vertically polarised incident wave is 
(Ulaby et al, 1982): 

 ( )
228 cos cos sin ,o

qp i s qp x i yk W k k kσ σ θ θ α θ= +  (4.1.1) 

where 

sin cosx s sk k θ φ= −  

sin siny s sk k θ φ= −  

( ) ( )
1

, ,
2

x yjk u jk v
x yW k k u v e dudvρ

π

∞ ∞ − −

−∞ −∞
=    

σ and ( ),u vρ  are, respectively, the variance of surface heights and the surface correlation 

coefficient; αqp are coefficients that depend on polarisation, incidence and scattering angle, 

and on complex relative dielectric constant εc of the homogeneous medium below the 

interface. The detailed expressions of αqp are reported in (Ulaby et al, 1982). 

4.2 Some remarks on the region of validity of the SPM 
The Small Perturbation Method is applied to surfaces with a surface height standard 
deviation much less than the incident wavelength (5 percent or less) and an average surface 
slope comparable to or less than the surface standard deviation times the wave number. For 
a surface with Gaussian correlation function, such two conditions can be expressed 
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analytically as follows, but they should be viewed only as a guideline for applying the SPM 
scattering model: 

0.3kσ <  

2 0.3lσ <  

The SPM has been compared to more accurate numerical simulations in (Thorsos & Jackson, 
1989; 1991) for one-dimensional rough surfaces with a Gaussian roughness spectrum. Under 

these conditions the authors show that the first-order SPM gives accurate results for kσ << 1 

and 1kl ≈ . The results also show that for kσ << 1 and kl > 6, the sum of the first three orders 

of the SPM is required to obtain accurate results. 
It has been argued that the SPM does account for multiple scattering up to the order of the 
perturbative expansion. This means that the first order perturbative solution does not 
account for multiple scattering but that some multiple scattering effects can be observed in 
the higher order solutions. 
 

Validity limits of Small Perturbation Method (SPM) 
(Gaussian surface) 

       kσ < 0.3             and             rmsslope < 0.3 
 

Table 4.2.1. Validity of SPM for stationary isotropic Gaussian surfaces with standard 

deviation σ and root mean square slope rmsslope. 

5. The Integral Equation Method (IEM) 

A relatively new method for calculating scattering of electromagnetic waves from rough 

surfaces is the Integral Equation Method (IEM). The IEM has been used extensively in the 

microwave region in recent years and it has proved to provide good predictions for a wide 

range of surface profiles. The method can be viewed as an extension of the Kirchhoff 

method and the Small Perturbation Method since it has been shown to reproduce results of 

these two methods in appropriate limits. The IEM is a relatively complicated method in its 

general form (including multiple scattering) and it is beyond the scope of the present 

overview to give a full presentation of the method. A more detailed presentation of the IEM 

can be found in (Fung, 1994). 

5.1 On the formulation of the IEM 
The starting point of the IEM is the Stratton-Chu integral for the scattered field, equation 

(3.1.1). The tangential surface fields which enter the Stratton-Chu integral are given in 

equations (2.2.11) - (2.2.12) and (2.2.15) - (2.2.16). In the Kirchhoff approach, the tangential 

fields are approximated using the tangent plane approximation, replacing the complete 

tangential surface fields with the Kirchhoff tangential surface fields of equations (3.2.1) and 

(3.2.2). It is clear that the Kirchhoff tangential surface fields cannot provide alone a good 

estimate of the surface fields since the integral form in equations (2.2.11) - (2.2.12) are not 

accounted for in the Kirchhoff approach. In the IEM, a complementary term is included in 

equations (3.2.1) and (3.2.2) to correct for this: 
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 ( ) ( )ˆ ˆ ˆ
k c

× = × + ×n E n E n E  (5.1.1) 

 ( ) ( )ˆ ˆ ˆ
k c

× = × + ×n H n H n H  (5.1.2) 

In these equations, the first terms on the right hand side are the tangential fields under 
Kirchhoff approximation and the complementary fields are given by: 

 ( ) ( ) 2
ˆ ˆ ˆ

4
i r

c
ds

π
′× = × − − × n E n E E n e  (5.1.3) 

 ( ) ( ) 2
ˆ ˆ ˆ

4
i r

c
ds

π
′× = × − + × n H n H H n   (5.1.4) 

rE  and rH  being the reflected electric and magnetic fields propagating along the reflected 

direction. To use (5.1.1) and (5.1.2) for estimating the tangential field, both the Kirchhoff 

field and the complementary field need to be expressed in terms of the incident field 

components and the surface reflectivity properties. Using the local coordinate system 

defined by the unit vectors t̂ , d̂ , ˆ
ik  (for their expressions refer to (Fung, 1994)), the 

incident electric and magnetic field can be expressed into locally horizontally and vertically 

polarised components. Accordingly, after some manipulations (see (Fung, 1994) for more 

details), the Kirchhoff and complementary tangential fields can be rewritten as: 

 ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆˆ ˆ ˆ ˆ1 1 i
h vk

R R E × = × + ⋅ + − ⋅ n E n p t t p d d  (5.1.5) 

 ( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆˆ ˆ ˆ ˆ1 1 i
h vk

R R Eη  × = × − ⋅ + + ⋅ n H n p t d p d t  (5.1.6) 

 
( ) ( ) ( ) ( ){ }

( ) ( ){ }

1 ˆ ˆˆ ˆ ˆ ˆ 1 1
4
1 ˆ ˆ ˆ 1 1

4

h h tc

v v t

R R ds

R R ds

π

π

′ × = − × × ⋅ × + + − 
′ − ⋅ × − + + 




n E n t n t n

t t n

e e

e e
 (5.1.7) 

 
( ) ( ) ( ) ( ){ }

( ) ( ){ }

1 ˆ ˆˆ ˆ ˆ ˆ 1 1
4

1 ˆ ˆ ˆ 1 1
4

v v tc

h h t

R R ds

R R ds

π

π

′ × = × × ⋅ × + + − 
′ + ⋅ × − + + 




n H n t n t n

t t n

 

 
 (5.1.8) 

It can be noted that, while (5.1.5) and (5.1.6) are expressed in terms of known quantities, that 
is the incident electric or magnetic fields, the local Fresnel reflection coefficient and the local 
incident angle, (5.1.7) and (5.1.8) are integral equations. In order to obtain estimates of (5.1.7) 
and (5.1.8), IEM substitutes the unknown expressions of the tangential fields in the right-

hand side of (5.1.7) and (5.1.8), that is the ( )ˆ ′ ′×n E  and ( )ˆ ′ ′×n H  terms which appear in e , 

te ,   and t , with the Kirchhoff tangential fields, ( )ˆ
k

′ ′×n E  and ( )ˆ
k

′ ′×n H , respectively. 

This is the fundamental approximation adopted by IEM model. However, even with this 
simplification the obtained integral expressions remain too complex for practical use. 
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Much simpler approximate expressions of the tangential Kirchhoff and complementary 
fields can be obtained differentiating them for each linear incident and scattered 
polarisation. The resulting approximated equations (electric and magnetic surface field 
equations for horizontal, vertical and cross polarisation) can be found in (Fung, 1994). 
Then, the simplified tangential surface fields can be inserted in the Stratton-Chu integral. 
The far field scattered from the rough surface can be expressed as a combination of the 
Kirchhoff and the complementary term: 

 s k c
qp qp qpE E E= +  (5.1.9) 

where 

 ( )
0

s ijk
qp qpE CE f e dxdy

− ⋅
=  k k r

 (5.1.10) 

and 

 ( ) ( )0
2 28 8

s is ju x x jv y y j jjc
qp qp qp

CEC
E F e dxdy F e dxdydudvdx dy

π π

′ ′ ′− + − + ⋅ − ⋅⋅ ′ ′= =  k r k rk r  (5.1.11) 

The quantities fqp and qpF , respectively the Kirchhoff and complementary field coefficients, 

that appear in the above equations are defined as follows: 

 ( ) ( ) 1
ˆ ˆ ˆ ˆ

qp s p p i
k k

f D Eη = × ⋅ × + ⋅ ×  q k n E q n H  (5.1.12) 

 ( ) ( )2
1

ˆ ˆ ˆ ˆ8qp s p p
c c

F Dπ η = × ⋅ × + ⋅ ×  q k n E q n H  (5.1.13) 

where 2 2
1 1 x yD Z Z= + +  and Ei is the complex amplitude of the incident electric field. 

In general, both fqp and qpF  are dimensionless, complicated expressions and depended on 

spatial variables. Therefore several approximations are made to make these functions 

independent of spatial variables (Fung, 1994).  
In particular, the fqp coefficients depend on the Fresnel reflection coefficients, and hence on 
the local angle, and on the slope terms, Zx and Zy. The first dependency is removed by 
approximating the local incidence angle in the Fresnel reflection coefficients by the incident 

angle, θi, for surface with small scale roughness and by the specular angle, θsp, ˆˆcos sp iθ = − ×n k , 

for surface with large scale roughness. The rule that defines the bound between the two 
regions is reported here assuming a Gaussian autocorrelation function: 

 

2
,

,
,

( ) 1.2

( ) 5

v h i r
v h

v h spec

R k l
R

R kl

θ σ ε

θ

 <
= 

>  (5.1.14) 

In order to remove the dependence on the slope terms, the integral (5.1.10) is solved by parts 
and the edge terms were discarded. 

To obtain the expressions of the complementary coefficients qpF , the computation is rather 

lengthy and complicated. When the equations (2.2.15) - (2.2.18) are substituted in the 
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approximated expressions of tangential complementary fields, the spectral representations 

of Green’s function and of its gradient are introduced, assuming however the same Green’s 

functions for both the medium: 

 ( ) ( )1

2

ju x x jv y y jq z zj
G e dudv

qπ

′ ′ ′− + − − −
= −   (5.1.15) 

 ( ) ( )1

2

ju x x jv y y jq z z
G e dudv

qπ

′ ′ ′− + − − −′∇ = −  g
 (5.1.16) 

ˆ ˆ ˆu v q= +g x y z  and 2 2 2q k u v= − −  are the propagation vector and its z-component of the 

generic plane wave that appears in the plane waves expansion of the field, whereas z and z′  

are the random variables representing the surface heights at different locations on the 

random surface. In (Fung, 1994), the z z′−  terms and the term with the   are dropped in 

the equations (5.1.15) and (5.1.16) in order to simplify the calculation. However, in an 

improved version of the IEM (see (Chen et al, 2000)) these terms are kept in the analysis. In 

addition, as was the case for the Kirchhoff coefficients, fqp, the dependence through the slope 

terms is removed by integrating by parts and discarding the edge terms. Instead, as regard 

the Fresnel reflection coefficients, the local angle is always replaced by incident angle (Fung, 

1994; Wu et al, 2001).  

Moreover, it is important to underline that the tangential and normal field components that 

appear in the expressions of the qpF  coefficients through equations (2.2.15) - (2.2.18) can be 

approximated by the tangential Kirchhoff fields. The complimentary field coefficients Fqp 

that appear in the right term of the equation (5.1.11) are obtained from the definition of the 

qpF  after the Green’s function and its gradient are replaced by the simplified spectral 

representation, above mentioned, and after the phase factor of the Green function and u, v, 

x’, y’ integrations are factored out. The expressions of such coefficients together with the 

expressions of the Kirchhoff ones are reported in (Brogioni et al, 2010).  
Once the field coefficients, fqp and Fqp, are made independent of spatial variables, it is 
possible to provide the expression of the incoherent scattered power:  

 

22 **

**

* ** *

                             

2Re

s s s s s s
qp qp qp qp qp qp

k k k k
qp qp qp qp

c k c k c c c c
qp qp qp qp qp qp qp qp

E E E E E E

E E E E

E E E E E E E E

− = − =

= − +

 + − + −  

 (5.1.17) 

and from this the bistatic scattering coefficient: 

 o k kc c
qp qp qp qpσ σ σ σ= + +  (5.1.18) 

From the above expression it follows that the scattering coefficient is given by the sum of 
three terms: the Kirchhoff, the complementary and the cross term. The first is originated by 
Kirchhoff fields, the second by the interaction between Kirchhoff and complementary fields, 
whereas the last is due only to complementary fields.  
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To carry out the average operation an assumption about the type of surface height 

distribution is necessary. In order to simplify the calculation of the incoherent power terms 

the rough surface is assumed characterised by a Gaussian height distribution. Accordingly, 

the terms in (5.1.18) assume the following expressions, reported in (Fung, 1994): 
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( ) ( ){ } ( ) ( )
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 (5.1.21) 

The above expressions consist of multiple integrals which are too complex and hence not 

practical to use. In order to evaluate these integrals, the model is approximated in two 

different forms depending upon whether the surface height is moderate or large in terms of 

the incident wavelength (kσ). The first case is referred to as low frequency approximation, 

whilst the other is referred to as high frequency approximation. An indicative threshold 

value of kσ < 2 is reported in (Fung, 1994). The detailed expressions of k
qpσ , kc

qpσ , c
qpσ  valid 

separately when kσ < 2 and for large kσ are given in (Fung, 1994) and are not reported here. 

For both the approximations, in the expression of the bistatic scattering coefficient two types 

of terms can be distinguished: one representing single-scattering and the other representing 

multiple-scattering. The latter may be viewed as a correction to the single term for both the 

high- and the low-frequency regions. This division is important to identify weather single or 

multiple scattering is significant for applications. For completeness we report here the total 

single scattering coefficient obtained by selecting the single scattering contributions in the 

expressions of k
qpσ , kc

qpσ , c
qpσ  valid when kσ < 2 (for the detailed explanation refer to (Fung, 

1994)): 
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2 2 2 2
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         (5.1.22) 

6. Conclusions 

We have presented the results from a literature search of models for scattering of 
electromagnetic waves from random rough surfaces. In particular we have focused on the 
calculation of the bistatic scattering coefficient in three different classes of methods: the 
Kirchhoff Approximation, the Method of Small Perturbation and the Integral Equation Method. Of 
these, the first two, are amongst the early approaches which however are still much used. 
The latter is an example of more recent approaches which have been developed as an 
attempt to extend the validity of the former methods. 
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